A Mean Field Game Model for the Dynamics of Cities

César Barilla¹
joint work with Guillaume Carlier² and Jean-Michel Lasry ³

¹Columbia University

²CEREMADE, Université Paris Dauphine, PSL and INRIA-Paris, Mokaplan

³CEREMADE, Université Paris Dauphine, PSL

Columbia Applied Micro Theory Colloquium 2020-09-22

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

- 2. Model
- 3. Existence of Solutions
- 4. An Efficient Algorithmic Approach
- 5. Simulations

Modelling the Dynamics of Cities

- ► Agglomeration forces commuting, amenities, rents, externalities,...
- Limited Control
 - \rightarrow Is location fixed or chosen ? \rightarrow **Both.**
- ► Endogenous dynamics ?
 - → No Steady State assumptions
- ▶ Can we generate complex dynamics with a very sparse model ?
 - → Commuting Costs (Spatial Labor Market)
 - → Rents / Congestion

Dynamically Endogenous Characteristics

- ► A broader modelling question : multiple time scales
 - → Locally in time, some characteristic is taken as exogenous
 ⇒ "Instantaneous" Equilibrium
 - → ...But becomes **endogenous** over time (at a cost)

- Equilibrium payoffs :
 - → Contingent on the whole distribution of types and its dynamics

- ► A general approach :
 - → Instantenous Matching Equilibrium ⇒ Optimal Transport
 - → Continuous Time Dynamics ⇒ Mean Field Games

Alternative Interpretations

City Dynamics

- → Populations : Workers and Firms
- → Types : Geographical Location
- → Instaneous Matching : Labor Market
- → Congestion : Rents

Labor Market

- → Populations : Workers and Firms
- → Types : Skills and Productive type
- → Instaneous Matching : Labor Market
- → Congestion : Demand Effect (sector size)

▶ (Intermediate) Goods Market

- → Populations : Sellers and Buyers
- → Types : Goods Type
- → Instaneous Matching : Goods Market
- \rightarrow Congestion : ?

Related Litterature

► Matching and Optimal Transport :

- → OT : Monge (1781), Kantorovitch (1942), Brenier (1991)
- → Well known connection : Chiappori, McCann, Nesheim (2010) ; Chiappori, Salanié (2016)

```
; Villani (2003,2008) ; Carlier, Ekeland (2016) ; Gallichon (2016) ; Santambrogio (2015)
```

Mean Field Games :

- → Lasry, Lions (2006); growing litterature
- → in Applied Maths: Cardaliaguet, Lasry, Lions, Porretta (2012); Cardaliaguet, Graber, Porretta, Tonon (2015); Benamou, Carlier, Di Marino, Nenna (2019)
- → in Economics: Heterogeneous Agents Model; Achdou, Buera, Lasry, Lions, Moll (2014)

► Sinkhorn/IPFP algorithm :

- → Sinkhorn (1968), Cuturi (2013), Peyre (2015), Benamou, Carlier, Cuturi, Nenna, Peyre (2015), Benamou, Carlier, Di Marino, Nenna (2019)
- → In Economics: Berry-Levinsohn-Pakes (1995); Gravity Models; Choo, Siow (2006); Chiappori, Salanié (2016); Galichon, Salanié (2020).
- Urban and Geographical Economics: usually a different perspective...

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

- 3. Existence of Solutions
- 4. An Efficient Algorithmic Approach
- 5. Simulations

Model Structure I: Setup

- ▶ Time : $t \in [0, T]$
- ▶ Space : Ω (typically \mathbb{T}^d or \mathbb{R}^d , $d \leq 2$)
- ► Two populations (continuum, mass 1) :
 - \rightarrow Residents/Workers with density $m_1(t,\cdot)$
 - \rightarrow Firms with density $m_2(t,\cdot)$
 - \rightarrow Initial densities m_1^0, m_2^0 are given.
- Unknown dynamics

Model Structure II: Instantaneous Interactions

Labour Market

- \rightarrow In equilibrium at any time t for given densities $m_1(t,\cdot), m_2(t,\cdot)$
- ⇒ Wages & Profits

Land Market

- \rightarrow In equilibrium at any time t for given densities $m_1(t,\cdot), m_2(t,\cdot)$
- → Land owned by absentee landlords
- → Residents and firms compete for land
- ⇒ Rents

Model Structure III: Dynamics

- Residents and firms solve an Optimal Control Problem internalizing equilibrium payoffs, cost of moving, dynamics
- ▶ Dynamics of $m_1, m_2 \Rightarrow$ Best-Response Behavior
 - → Hamilton-Jacobi-Bellman Equation
- ▶ Optimal feedback \Rightarrow Dynamics of m_1, m_2
 - → Fokker-Planck Equation

⇒ Look for a Fixed Point

2. Model

Rents - Land Market

Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

Rents

- ightharpoonup Rents : R(t,x)
- \triangleright Exogenous increasing supply function : S(R)
- ► Market clearing :

$$m_1(t,x) + m_2(t,x) = S(R(t,x)) \quad \forall t,x$$

▶ Denote $f := S^{-1}$:

$$R(t,x) = f(m_1(t,x) + m_2(t,x))$$

2. Model

Rents - Land Market

Labour Market

Workers and Firms Optimal Control Problem
The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

Labour Market Structure

- ▶ Commuting cost : $c \in C(\Omega \times \Omega)$, $c(x,y) \ge 0 \ \forall x,y$
- Firms
 - \rightarrow offer wage w(t, y)
 - → demand normalized to one unit of labour
- Workers solve :

$$r(t,x) := \max_{y \in \Omega} w(t,y) - c(x,y)$$

By construction :

$$w(t,y)-r(t,x) \leq c(x,y) \quad \forall (x,y)$$

Labour Market Equilibrium I

- ▶ Denote $\gamma(x, y)$ the mass of workers from x that work at y
- ► Market Clearing :

$$\pi_1 \# \gamma(x) = m_1(x), \quad \pi_2 \# \gamma(y) = m_2(y)$$

► Stability (from optimizing behavior of workers and firms) :

$$w(y) - r(x) = c(x, y) \quad \forall (x, y) \in \operatorname{spt}(\gamma)$$

 $w(y) - r(x) \le c(x, y) \quad \forall (x, y)$

ightarrow This is the complementary slackness condition of an Optimal Transport Problem !

Labour Market Equilibrium II

Well-known equivalence between stability and surplus maximization (cost minimization):

$$C(m_1, m_2) = \min_{\gamma \in \Pi(m_1, m_2)} \int c(x, y) d\gamma(x, y)$$
 (MP)

▶ Dual form (Linear Programming) :

$$C(m_1, m_2) = \max_{\alpha_1, \alpha_2} \int \alpha_1(x) dm_1(x) + \int \alpha_2(y) dm_2(y) \quad (KD)$$

$$s.t. \quad \alpha_1(x) + \alpha_2(y) \le c(x, y) \ \forall x, y$$

Symmetrical notations :

$$\alpha_1 = -r$$
, $\alpha_2 = w$

Regularization / noise

▶ In practice we often consider the *regularized optimal transport* problem :

$$C^{\sigma}(m_1, m_2) = \min_{\gamma \in \Pi(m_1, m_2)} \int c(x, y) d\gamma(x, y) + \sigma \int \gamma(x, y) (\log \gamma(x, y) - 1)$$

- Note that γ has an almost closed form solution $\gamma(x, y) = \alpha_1(x)\alpha_2(y)e^{-\frac{c(x,y)}{\sigma}}$
- ▶ When $\sigma \to 0$, $C^{\sigma} \to C$: useful for numerical simulations! Cuturi (2013), Benamou et. al. (2015, 2019)
- ► Can be viewed as adding **noise** in the coupling
 - → Link with random utility (logit) see e.g. Galichon and Salanié (2020), Chiong, Galichon, Shum (2016), Chiappori and Salanié (2016), Choo and Siow (2006).

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

From Static to Dynamic : Workers

- Position is Endogenous over time → minimize costs, taking dynamics as given.
- Movement of a resident follows a controlled diffusion process

$$dX_s = v_1(s, X_s)ds + \sqrt{2\nu_1}dB_s, \quad X_t = x$$
 (1)

Worker's Optimal Control Problem :

$$u_1(t,x) := \min_{v_1} \int_t^T (L_1(v_1) + R(s, X_s) + \alpha_1(s, X_s)) ds$$

subject to (1)

where
$$R(s, x) = f(m_1(s, x) + m_2(s, x))$$

From Static to Dynamic : Firms

- ▶ Position is Endogenous over time → minimize costs, taking dynamics as given.
- Movement of a firm follows a controlled diffusion process

$$dY_s = v_2(s, Y_s)ds + \sqrt{2\nu_2}dB_s, \quad Y_t = y$$
 (2)

Firm's Optimal Control Problem :

$$u_2(t,x) := \min_{v} \int_{t}^{T} (L_2(v_2) + R(s, Y_s) + \alpha_2(s, Y_s)) ds$$

subject to (2)

where
$$R(s, y) = f(m_1(s, y) + m_2(s, y))$$

Best Response : HJB

- ▶ Optimal control : characterized by solution of a PDE → Hamilton-Jacobi-Bellman (HJB) equation
- ► To simplify, take

$$L_i = \theta_i \frac{|v_i|^2}{2}, \quad i = 1, 2$$

▶ The value function $u_i(x, t)$ solves :

$$\partial_t u_i + \nu_i \Delta u_i - \frac{|\nabla u_i|^2}{2\theta_i} = -R - \alpha_i, \quad u(T, \cdot) = 0$$
 (HJB)

▶ The optimal control is recovered as $v_i(t,x) = \frac{\nabla u_i(t,x)}{\theta_i}$

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

Deriving the dynamics: the Fokker-Planck Equation

 \triangleright Consider a diffusion process (individual dynamics) X_t :

$$dX_t = v(t, X_t)dt + \sqrt{2\nu}dB_t, \quad X_0 \sim m^0$$

for an arbitrary field v and initial distribution m^0

- ▶ Denote m(x, t) the density (probability distribution) of X_t
 - \rightarrow How to obtain the evolution of m(t,x) from individual dynamics ?
- ► General answer : Fokker-Planck equation

$$\partial_t m - \nu \Delta m - div(mv) = 0, \quad m(0, \cdot) = m^0$$
 (FP)

Equilibrium: the MFG system

- ▶ Optimal Control for given density dynamics → HJB
- ▶ Density Dynamics for given control → Fokker-Planck
- ► How to find a fixed point (i.e Nash Equilibrium) ?
 - \rightarrow HJB + Fokker-Planck : system of PDEs in (u, m)
 - \rightarrow This is the MFG System !
- ► "Canonical" one population MFG System (Lasry/Lions 2006)

$$\begin{cases} \partial_t u(t,x) + \nu \Delta u(t,x) - \frac{|\nabla u(t,x)|^2}{2} = -\phi(t,m) & \text{(HJB)} \\ \partial_t m - \nu \Delta m - \text{div}(m\frac{\nabla u}{\theta}) = 0 & \text{(FP)} \\ m(0,\cdot) = m^0, u(T,\cdot) = 0 & \end{cases}$$

The Full MFG System

Putting it all together, we look for a solution $(u_1, u_2, m_1, m_2, \alpha_1, \alpha_2)$ where all functions are defined over (t, x)

$$\begin{cases} \partial_{t}u_{1} + \nu_{1}\Delta u_{1} - \frac{|\nabla u_{1}|^{2}}{2\theta_{1}} = -f\left(m_{1} + m_{2}\right) - \alpha_{1} & \text{(HJB 1)} \\ \partial_{t}u_{2} + \nu_{2}\Delta u_{2} - \frac{|\nabla u_{2}|^{2}}{2\theta_{2}} = -f\left(m_{1} + m_{2}\right) - \alpha_{2} & \text{(HJB 2)} \\ \partial_{t}m_{1} - \nu\Delta m_{1} - \operatorname{div}(m_{1}\frac{\nabla u_{1}}{\theta_{1}}) = 0 & \text{(FP 1)} \\ \partial_{t}m_{2} - \nu\Delta m_{2} - \operatorname{div}(m_{2}\frac{\nabla u_{2}}{\theta_{2}}) = 0 & \text{(FP 2)} \\ m_{i}(0, \cdot) = m_{i}^{0}, \ i = 1, 2 & \text{(IC)} \\ u_{i}(T, \cdot) = 0, \ i = 1, 2 & \text{(TC)} \end{cases}$$

Where $(\alpha_1(t,\cdot),\alpha_2(t,\cdot))$ solve the dual matching problem $\forall t$, i.e :

$$lpha_1(t,x) + lpha_2(t,y) \le c(x,y) \quad \forall (t,x,y)$$

$$C(m_1(t,\cdot),m_2(t,\cdot)) = \int \alpha_1(x)m_1(t,dx) + \int \alpha_2(y)m_2(t,dy) \quad \forall t$$

- 1. Introduction
- 2. Model
- 3. Existence of Solutions
 Variational Version and Duality
 Existence
- 4. An Efficient Algorithmic Approach
- 5. Simulations

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

Variational Approach

- ► Solving the MFG System directly ?
- ► The system has a Variational Structure :
 - → can be rewritten formally as an infinite dimensional constrained optimization problem
- ► The equations of the MFG system are the first order (primal-dual) conditions of this problem
- ► Then : use the tools of infinite-dimensional convex analysis (duality theory) to prove existence and other results

The (Eulerian) Variational Problem I

▶ Define $F(m) := \int_0^m f(x) dx$ and :

$$\mathcal{F}(m_1,m_2) = egin{cases} \int_{\Omega} F(m_1(x) + m_2(x)) dx & ext{if } m_1,m_2 \geq 0 \\ +\infty & ext{otherwise} \end{cases}$$

 \blacktriangleright Go back to a general cost of motion L_i

The (Eulerian) Variational Problem II

Proposition (Variational Problem)

The MFG system is formally equivalent to :

$$\inf_{w_1,w_2,m_1,m_2} \int_0^T \int_{\Omega} L_1\left(x, rac{w_1}{m_1}
ight) m_1 + L_2\left(x, rac{w_2}{m_2}
ight) m_2 \ + \int_0^T C(m_1(t,\cdot), m_2(t,\cdot)) \ + \int_0^T \mathcal{F}(m_1(t,\cdot), m_2(t,\cdot))$$

subject to:

$$\begin{cases} \partial_t m_i - \nu_i \Delta m_i - \operatorname{div}(w_i) = 0, & i = 1, 2 \\ m_i(0, \cdot) = m_i^0, & i = 1, 2 \end{cases}$$

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality

Existence

4. An Efficient Algorithmic Approach

Entropy Minimization Problem Generalized sinkhorn algorithm

A General Existence Theorem

Theorem

The relaxed Variational Problem admits at least one solution. In particular, the MFG system admits a weak solution in an appropriately defined sense.

- ightarrow Relies on duality theory, calculus of variation techniques, and the theory of weak subsolution of HJB equations.
- → Find solutions in a relaxed sense
- ⇒ not necessarily continuous and differentiable

The Case of Quadratic Costs

Proposition

Assume quadratic cost of motion :

$$L_i = \theta_i \frac{|v_i|^2}{2}$$

The Variational Formulation and the MFG system admit classical/strong solutions, i.e continuously differentiable solutions.

Uniqueness?

► Uniqueness is not guaranteed is general!

► Potentials are only defined up to an additive constant (if I augment all wages by a constant, the equilibrium stays the same : only relative wages matter)

▶ In general : no hope for uniqueness.

- 1. Introduction
- 2. Model
- 3. Existence of Solutions
- 4. An Efficient Algorithmic Approach
 Entropy Minimization Problem
 Generalized sinkhorn algorithm
- 5. Simulations

1. Introduction

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach Entropy Minimization Problem

Generalized Sinkhorn algorithm

5. Simulations

The Space of Paths Measures

- ► Assume Quadratic *L_i* from now on.
- ► MFG and OT have a deep relation with Schrodinger's problem → Dawson, Gartner (1987), Follmer (1988), Leonard (2013), Benamou et. al. (2019)
- ▶ Problem can be rewritten as an optimization in the space of probability measures on **paths** :

$$P = \mathcal{P}(C([0, T], \Omega))$$

▶ Define the relative entropy of measure p w.r.t q (a.k.a. Kullback-Leibler Divergence) :

$$H(p|q) = \int dp \left(\log \frac{dp}{dq} - 1\right)$$

Entropy Minimization

Fundamental result :

$$\inf_{\substack{v \\ \partial_t m - \frac{1}{2}\Delta m + \text{div}(mv) = 0}} \int_0^T \int_{\Omega} \frac{|v|^2}{2} m = \inf_{\substack{Q \in P \\ e_t \# Q = m_t}} H(Q|R) - H(m_0|R_0)$$

- Minimizing energy for a given flow m_t is equivalent to minimizing the relative entropy with respect to the Wiener measure R.
- ► Remark : the regularized OT problem can also be rewritten as some entropy minimization

$$C^{\sigma}(m_1, m_2) = \sigma \min_{\gamma \in \Pi(m_1, m_2)} H(\gamma | e^{-\frac{c}{\sigma}})$$

A Second Variational Formulation

Recall the First Variational Formulation :

$$\inf_{(m,w)} \sum_{i=1}^{2} \frac{\theta_{i}}{2} \int_{0}^{T} \int_{\Omega} \frac{|w_{i}|^{2}}{m_{i}} + \int_{0}^{T} (C + \mathcal{F})(m_{1}(t,.), m_{2}(t,.)) dt$$

► This is equivalent to :

$$\inf_{\substack{Q_1,Q_2\in P \ e_0\#\,Q_i=m_i^0}} heta_1 H(Q_1|R_1) + heta_2 H(Q_2|R_2) \ + \int_0^T (C+\mathcal{F})(e_{t\#}Q_1,e_{t\#}Q_2) \mathsf{d}t$$

1. Introduction

2. Model

Rents - Land Market Labour Market Workers and Firms Optimal Control Problem The MFG system

3. Existence of Solutions

Variational Version and Duality Existence

4. An Efficient Algorithmic Approach

Generalized sinkhorn algorithm

5. Simulations

The Sinkhorn Iterative Scaling Algorithm

- Celebrated algorithm in the Optimal Transport litterature : fast, easy to implement, scalable.
- ▶ Recently : Generalized versions \rightarrow amenable to essentially any penalized entropy-minimization problem inf $_pH(p|q)+f(p)$
- ► First applied to classical MFG in Benamou et. al. (2019)
- ► Closely related to many other litteratures : Berry-Levinsohn-Pakes (1995) ; Gravity Models ; Choo, Siow (2006) ; Chiappori, Salanié (2016) ; Galichon, Salanié (2020).

An Embedded Generalized Sinkhorn

- ► The beauty of the algorithm : solve everything at once (instantaneous equilibria + dynamics for both population)
- ▶ Heavy to write out... But easy to implement!
 - → Discretize the problem on a grid (time-space)
 - → Write the dual problem
 - → Alternate minimization (coordinate descent) on the dual
- ► Fast!

- 1. Introduction
- 2. Model
- 3. Existence of Solutions
- 4. An Efficient Algorithmic Approach
- 5. Simulations

Setup

- ► *S* : discretized one-dimensional torus (circle)
- ▶ T horizon, in time steps is N + 1 (indexed by k = 0, ..., N)
- θ_1, θ_2 : mobility parameters (higher $\theta \Rightarrow$ costlier to move)
- $ightharpoonup \sigma$: "noise" in instantaneous equilibrium
- \triangleright ν_1, ν_2 : diffusivity parameters for residents and firms
- ▶ the congestion/rent function is given by :

$$F(x) = \frac{ax^p}{p},$$

higher a and p mean stronger congestion,

- Ground cost: either
 - → geodesic distance (labeled as *linear*)
 - → its square root (labeled *sqrt*)
 - → its square distance (labeled quadratic).

Effect of commuting cost on segregation patterns

Figure 1: Effect of the ground cost

Population Asymmetry and Sensitivity to Initial Conditions

Figure 2: Reversed initial conditions example

T = 40 ; N = 80 ; θ_1 = 150 ; θ_2 = 200 ; σ = 0.1 ; ν_1 = 0.01 ; ν_2 = 0.01 ; p = 50 ; a = 100 ; ground cost : sqrt

Figure 3: A multi-centric city

What to take from the simulations?

- ► A very sparse model can generate rich and complex dynamics
- ▶ High sensitivity to commuting cost
- ► High sensitivity to initial conditions
- ► Apparently intuitive comparative statics (speed of convergence, agglomeration effects)
- ▶ Diverse segregation patterns
 - → Varying parameters yield the American-style city with a business center and residential suburbs, its inverted ("European") form, a bimodal city in, a near-uniform city with several industrial centers....

Conclusion

- ► A general framework
 - → New tools
 - → Well defined
 - → Numerical Method

► Further Applications ?

► Thank you!